#### **Topic 13.1: Solid Figures and Nets**

- 1. **Polyhedron** 3-dimensional figure made of flat polygon-shaped surfaces called faces.
- 2. Faces flat polygon-shaped surfaces.
- 3. Edge line segment where two faces intersect.
- 4. Vertex point where several edges meet.



5. Prisms – a polyhedron with 2 identical, parallel, polygon-shaped bases. A prism is named by the shape of its base



Rectangular Prism



Pentagonal Prism



6. Pyramids – a polyhedron that has one base. A pyramid is named by the shape of this base.



Triangular Pyramid



Rectangular Pyramid



Hexagonal Pyramid

7. **Cylinder** – two circular bases that are parallel and identical.



8. **Sphere** – no base. Every point on a sphere is the same distance from the center.



9. Cone – one circular base. The points on this circle are joined to one point outside the base.



10. **Net** – a plane figure pattern which, when folded, makes a solid shape.



## **Topic 13.2: Surface Area of Prisms and Pyramids**



2 triangles 1xw  

$$SA = \frac{1}{2}bh \times 2 + area of rectangular$$
  
 $faces$   
 $SA = (\frac{1}{2} \times 12 \times 9)2 + (12 \times 18) + (9 \times 18) + (15 \times 18)$   
 $SA = 108 + 216 + 162 + 270$   
 $SA = 756 \text{ cm}^2$ 





$$SA = 2IW + 2Wh + 2Ih$$
  
 $SA = 2 \times 10 \times 5 + 2 \times 5 \times 15 + 2 \times 10 \times 15$   
 $SA = 100 + 150 + 300$   
 $SA = 550 \text{ cm}^2$ 

# **Topic 13.3: Surface Area and Volume**

**Volume –** the number of cubic units needed to fill a solid figure.

\*To find the volume (V) of a rectangular prism, multiply the area of the base (B) by the height (h) of the figure.

Formula:

 $V = B \times h$ 

**Step 1**: Find the area of the base.

B = 1 x w

**Step 2**: Find the height of the prism.

The height will be listed on the shape.

**Step 3**: Find the volume.

 $V = B \times h$ 







$$V = B \times h$$

$$V = 1 \times W \times h$$

$$V = 3 \times 2 \times 5$$

$$V = 30 \text{ ft}^{3}$$

## **Topic 13.4: Volume with Fractional Edge Lengths**

\*Use the formula for finding the volume of a rectangular prism:  $V = I \times W \times h$ 



$$V = |xWxh| \\ V = |\frac{1}{2} \times |\frac{1}{2} \times |\frac{1}{2}| \\ V = 3\frac{3}{8} \text{ in }$$

$$\frac{3}{2} \times \frac{3}{2} \times \frac{3}{2} = \frac{27}{8} \times \frac{\cancel{3}}{\cancel{27}}$$



$$V = 1 \times W \times h$$
  
 $V = 14.8 \times 4.5 \times 3.5$   
 $V = 233.1 \text{ m}^3$ 



$$V = 1 \times W \times h$$

$$V = 2 \times 1 = 3 \times 5 = 3$$

$$V = 17 = 9 \times 4$$

$$V = 17 = 9 \times 4$$

$$\frac{2}{7} \times \frac{5}{3} \times \frac{16}{3} = \frac{160}{9}$$

$$\frac{\times 17}{9 160}$$

$$\frac{\times 17}{70}$$

$$\frac{-90}{70}$$

## **Topic 13.5: Use Objects and Reasoning**

#### Plan and Solve:

- 1. Count the cubes to find the volume.
- 2. Count all the outside faces of the cubes in the figure to find the surface area. Keep in mind faces that might be "hidden."



